11.4 RADIATION RISK MODELS

TIME DEPENDENT MODIFYING FACTORS FOR CANCER MORTALITY ASSOCIATION WITH LOW DOSE AND LOW DOSE-RATE EXPOSURE TO IONIZING RADIATION IN J-EPIISODE

MR. HIROSHIGE FURUTA† MR. SHIN’ICHI KUDO† MR. JUN’ICHI ISHIDA† MRS. KEIKO YOSHIMOTO†
† Institute of Radiation Epidemiology, Radiation Effects Association, Chiyoda-ku, Japan

BIOGRAPHY

CAREER:
• 1974 Graduated from Faculty of Science, Kyoto University
• 1974-2003 Government official of Ministry of Labour, Embassy of Japan in Korea, and Statistics Bureau, etc.

• 2003-2008 Head of Research and Development Headquarter, Statistical Information Institute for Consulting and Analysis (Sinfonica), cum;
• Adjunct Lecturer, Graduate School of Economics, Tokyo International University
• 2008-2012 Lecturer/Statistician, Statistical Institute for Asia and the Pacific (UNSIAP)
• 2015- Present

SOCIETY:
• Member of Japan Statistical Society and Japanese Radiation Research Society

EXPERTISE:
• Radiation epidemiology, Economic statistics, Statistical methods and International micro data of household surveys

ABSTRACT

Background
The latest report of Japanese Epidemiological Study of Low-Dose Radiation Effects (J-EPISODE), which followed up 204,130 male nuclear workers during 1991-2010, indicated that smoking might be a strong confounder in the association with radiation and cancer mortality, and the report therefore had no clear conclusion regarding low-dose radiation risk.

Most workers have engaged in NPPs, which have been in operation since 1966. The annual exposure dose at the 95th percentile was over 10mSv in the 1970s, but declined sharply, to less than the natural radiation level. The dose exposed during 1970-85 largely affected the cumulative dose during the follow-up period.

Objective
The objective of the present study is to evaluate the impact of several time dependent modifying factors, such as annual exposure dose rate.

Methods
The cumulative dose was divided into several windows of the factor studied, and an additive ERR model was applied.

Results
Regarding the two windows of annual dose rate (for instance, <5 mSv/year vs. >=5 mSv/year), the ERR/Sv in relation to the cumulative dose received at <5 mSv was negative, and smaller than that received at >=5 mSv.

Conclusion
A Cumulative dose derived from an extremely low annual dose rate suggests a different dose response than that from a higher dose rate. We propose paying attention not only to cumulative doses, but also to the exposure dose rate and duration of exposure.

Funding
This study was funded by the Nuclear Regulation Authority, Japan.